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     Abstract-The addition of fillers, such as talc, mica and carbon 
black, are used commonly in industry to improve physical 
properties of polymers, such as stiffness, hardness, wear, heat 
distortion temperature or electrical conductivity, or to reduce the 
overall raw material cost of a part.  Not withstanding these 
opportunities, the addition of micron-sized fillers to a polymer 
may have detrimental effects on its dielectric characteristics, such 
as dielectric loss, breakdown strength and dielectric durability.  
Recently, the addition of nanometer-sized fillers, or nanofillers, 
has shown potential for improving the polymer’s dielectric 
breakdown voltage in conjunction with augmentation of its 
mechanical properties.   Five different sets of thermoplastics were 
tested between opposed cylindrical rod electrodes of 6.4 mm 
diameter with rounded edges of 0.8 mm radius.  The applied 
voltages were at 60 Hz.  All polymers in this study showed an 
increase in the average dielectric strength from five to fifty-six 
percent with the nanoscale dispersion of 1-5 wt% organically 
modified montmorillonite (nanoclay).  Most of these increases 
exhibited statistically significant margins.  The tested 
thermoplastic polymers include nylon-6, low-density 
polyethylene, low-density polyethylene/ethylene-vinyl acetate 
copolymer, and polyester.  The percent composition of nanofiller 
was confirmed by thermogravimetric analysis and nanofiller 
distribution was analyzed using transmission electron 
microscopy. 
 

I. INTRODUCTION 
While polymer dielectrics store energy by distorting the 

electron distribution around the polymer chain, the amount of 
energy they can store is limited by the distortion’s potential to 
cause breakdown of the bulk material.  At some field strength, 
the electrons will have high enough energy to break from the 
polymer backbone. The localized accumulation of charge 
increases the likelihood of free electron formation in the 
presence of a high electric field.  Although ideally a dielectric 
would experience a relatively uniform field, impurities and 
imperfections in the polymer matrix generally lower real-
world dielectric strength, and electrode configuration also 
factors into field uniformity.  

As soon as electrons are free within the dielectric, they are 
rapidly accelerated through the material by the applied field 
until they collide with another branch of the polymer.  If the 
mean free path is long enough or the applied field is strong 
enough, the electrons can gain the kinetic energy necessary to 
free new electrons (or create UV photons) upon collision with 
the polymer.  If each collision results in more than one 
electron being released on the average, then an exponentially 
increasing “electron cascade” will take place and will result in 
a disruptive breakdown of the dielectric. 

Other discharges can damage the dielectric, but not lead to 
total failure.  Types of detrimental discharge include corona 
formation, treeing, and tracking.  These phenomena can result 
in slow degradation of the polymer, at times creating 
conductive pathways around or through the material.  The 
conduction path may breach the bulk material or at least 
damage it enough so that the breakdown potential is lowered 
to the level of the applied voltage and a disruptive breakdown 
takes place. 

The first test used in this study measures dielectric 
strength.  This rating describes the peak applied field achieved 
under a specific electrode arrangement with a rapid potential 
ramp rate.  It indicates the polymer’s resistance to short-term 
breakdown at high field strengths. 

The second test determines the endurance of the polymer 
under a lower applied field for an extended period.  Under this 
moderate field strength a corona, which is an area of ionized 
gas emitting UV radiation, slowly breaks down the polymer at 
the surface. Ideally this method is used on samples of equal 
thickness under identical conditions (voltage, electrode 
configuration).   

With respect to electrical breakdown, nano-films (nano-
filler modified films) have shown improvements over their 
neat (unmodified) film equivalents.  This has been 
demonstrated in the case of silica addition to epoxy [4] where 
corona resistance was increased over nine times with a silica 
addition of 4.7% by weight.  Prior study into the addition of 
POSS to polypropylene showed a seven times increase in 
corona lifetime over the polypropylene with no filler [5].  In 
more recent work [6,7], breakdown strength of a control epoxy 
and a 5% by weight POSS loaded epoxy were compared. The 
epoxy with POSS showed a 33% increase in breakdown 
strength. 

With reasoning taken from Nelson and Fothergill for their 
work on nanometer sized titanium dioxide in epoxy, nano-
additives in thermoplastics may allow localized charge 
movement thereby minimizing bulk charge accumulation.  
This may keep localized internal fields low and aid in 
increasing dielectric breakdown strength [1].   

Varlow and Li found that at low filler concentrations 
(≤15% by weight), the electrical properties of the polymer 
were prevalent, and the dielectric constant remains relatively 
unchanged with a varying applied field [2].  Higher filler 
concentrations may result in clumping, which would cause the 
nanofillers to act more like microfillers (micrometer-sized 
fillers).  In some cases, microfillers have hurt electrical 
polymeric properties like the dielectric breakdown strength 
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[3].  This may be due to the relatively low surface-to-volume 
ratio of microfillers, since charge mobility is only aided at the 
filler-matrix interface [8]. 

In this study, variants of three polymers (polyethylene, 
nylon, and polyester) were tested for increases in their short-
term dielectric strength as well as in their corona endurance 
with the addition of clay nanofillers.   

Low density polyethylene (LDPE) is a mechanically tough, 
inexpensive polymer used heavily in industry.  Numerous 
studies have sought the enhancement of its electrical, thermal, 
or mechanical properties through low-cost additives.  Studies 
into nanofiller additives including titanium dioxide [1] and 
alumina [9] have shown significant increases in electrical 
breakdown strength with low (≤10% by weight) filler 
amounts.   

A blend of LDPE grafted with maleic anhydride (LDPE-g-
MA) is tested in this work for improved electrical properties 
with clay addition.  The graft introduces polarization to the 
polymer backbone which allows for a more even dispersion of 
polar nanofillers.  Previous work with grafting has improved 
dielectric strength and resilience to water treeing in neat 
samples without filler [10].   

This study tests a linear low density polyethylene (LLDPE) 
copolymer with octene.  LLDPE improves over regular LDPE 
in a number of mechanical properties, though it has a higher 
production cost.  

A laminate of LDPE with ethylene vinyl acetate (EVA) 
was also investigated.  In this sample, the EVA was of 0.75 
mil thickness.  This pair has previously been used to study 
local charge accumulation under DC voltage [11].  It is 
hypothesized [1] that this accumulation incites polymer 
dielectric breakdown.  Improvement in the dielectric 
breakdown of this material would support the hypothesis that 
the nanofiller dissipates accumulated charge. 

Nylon-6 is both tough and strong, while also holding 
potential as an example of green chemistry in commercial and 
industrial polymer research [12].  Samples of this and 
polyethylene terephthalate (PET) have also been included in 
the scope of this study.  PET is a lightweight resin with 
variable rigidity.  Its manufacture accounts for a large part of 
the overall polymer industry, only behind that of polyethylene 
and polypropylene. 

The use of inexpensive nanofillers to strengthen 
thermoplastics against electrical failure extends their 
usefulness in high voltage applications, but polymer 
interactions are very difficult to generalize.  Due to potential 
performance benefits of these modifications, this study has set 
out to survey a range of polymers for improvement with the 
use nanoclay filler.   

 
II. EXPERIMENTAL METHOD 

     All thermoplastics were received as manufactured in film 
form with thicknesses ranging from 20 to 104 µm.  Clay 
nanoadditives were added during manufacture up to 15% by 
weight.  The weight percent and distribution of each polymer 
sample were investigated using thermogravimetric analysis 
and transmission electron spectroscopy.   

     The short-term dielectric withstand tests were performed 
with ASTM standard D 149 electrodes [13]. Each rod 
electrode was 6 mm in diameter with a 0.8 mm radius at the 
tip edge. The sample was placed between two identical, 
aligned rods. A special fixture was designed to hold the 
samples, inhibit surface flashover (without insulating gas or 
liquid immersion), and enable bulk breakdown. Sixty Hz ac 
voltage was applied from a Biddle 582040KV-3 KVA power 
supply at an approximate rate of increase of 0.96 kV/s.  A 
minimum of 14 samples were tested for each polymer type.  
Voltage readings were taken with a Northstar VD-60 probe 
connected to a Tektronix TDS 3054B oscilloscope. 
     The corona endurance tests were undertaken following the 
setup of the ASTM standard D 2275 test [14].  The upper 
electrode was 6 mm in diameter with a 0.8 mm radius at the 
tip edge, and the lower electrode was 25 mm in diameter with 
a 3 mm radius at the tip edge.  The sample was cut so that it 
would cover most of the lower electrode’s surface, and was 
placed between the two electrodes.  The voltage was quickly 
increased to 2.25 kV of 60 Hz ac and then maintained at the 
test voltage.  The power supply included a Trek 662 & 663A 
high voltage amplifier utilizing a Wavetek 275 function 
generator source.  The same Northstar VD-60 probe and 
Tektronix TDS 3054B oscilloscope were used for 
measurement.  Custom circuitry was employed to record the 
timing of individual breakdown events. 
     The tested filler, montmorillonite, is a natural clay which 
consists of crystallized platelets of (Na,Ca)(Al,Mg)6(Si4O10)3 

(OH)6 · nH2O.  It is highly hygroscopic, and expands to 
several times its dry volume with the addition of water.  In this 
study,    exfoliated   platelets   of   the   clay   are   used,     and 
manufacture was carried out so as to distribute the layers 
evenly through the film.  Single platelets are on the order of 1 
nm thick, with a range of diameters, from 50 to hundreds of 
nanometers.  The surface of the montmorillonite layers is 
modified with surfactants, typically octadecyl ammonium, for 
increased compatibility with synthetic polymers.  The 
particular formulations for chemical modifications of the 
montmorillonite, as well as processing details, are proprietary.     

   III. RESULTS AND DISCUSSION 

In short term tests, all nanocomposite samples showed 
increased average dielectric strength over their respective neat 
counterparts.  The averages and standard deviations for all test 
data obtained in this study can be found in Table 1.   
     The LLDPE film achieved a 19% increase with a 2.39 wt% 
addition of filler.   Transmission electron micrographs of film 
cross-sections at low and high magnification (Figures 1A and 
1B) show moderately good dispersion of the clay layers, with 
some individual layers present but mostly aggregates of 2-40 
layers.  The LDPE/EVA films were also tested, and the 
experimental film with 1.30 wt% filler added showed a 5% 
increase in dielectric strength.  The LDPE-g-MA set 
underwent a 28% increase in dielectric strength with 5.71 wt% 
of nano-sized clay filler added.   These results indicate a 
general benefit in dielectric breakdown strength with addition 
of  clay  nanofiller  to  polymers,  however  processing and the  
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TABLE I 
RESULTS OF DIELECTRIC STRENGTH AND CORONA ENDURANCE TESTS 

 
 
 
Sample  
(weight % clay) 

Dielectric  
Strength Tests Corona Endurance Tests 

Average 
(kV/mm) 

σ 
(kV/mm) 

Median Time of 
Breakdown (h) 

Sample 
Height (μm) 

LLDPE (0%) 207 40.1 17.5 44 

LLDPE (2.39%) 247 32.2 87.3 68 
     

LDPE/EVA (0%) 133 24.9 19.9 60 

LDPE/EVA (1.30%) 140 22.8 24.1 52 
     

LDPE-g-MA (0%) 202 37.0 24.1 49 

LDPE-g-MA (5.71%) 257 28.5 50.6 45 
     

Nylon-6 (0%) 66 8.7 7.5 55 

Nylon-6 (2.84%) 75 3.4 60.8 70 

Nylon-6 (2.96%)1 99 6.8 - 26 
     

Polyester (0%) 139 18.5 22.2 80 

Polyester (12.87%) 217 34.9 50.4 57 

Polyester (14.53%) 156 24.1 51.4 67 
   1 Sample was too thin for comparable corona endurance testing 

 
subsequent morphology obtained is a key component in 
maintaining such benefits, as the following results 
demonstrate. 
     Nylon-6 2.84 wt% (Figures 1C and 1D) and Nylon-6 2.96 
wt% (Figures 1E and 1F) increased by 13% and 49% 
respectively over the breakdown strength of the pure Nylon-6 
film.  TEM images of the 2.84% sample showed micron-sized 
aggregates, which may lead to a lower than expected 
breakdown strength.  Aggregation due to excessive 
nanoparticle loading is not expected to be the reason for the 
poor performance of the 2.84% sample, as each sample has a 
similar weight percent loading.   
     Polyester with 12.87 wt% nanofiller showed a 56% 
increase over the neat polyester film, however with further 
addition of nanofiller this trend did not continue. TEM images 
of polyester nanocomposites with 12.87% loading are shown 
in Figures 1G and 1H and 14.53% loading in Figures 1I and 
1J.  The low and high magnification micrographs for each 
sample show that they both exhibit uniform distribution of 
nano-sized clay aggregates, with the aggregates containing 
approximately 2-20 clay layers each.  Only in the 
nanocomposite with higher loading, however, were larger 
micron-sized aggregates visible (Fig. 1I, inset).  These micron-
sized aggregates are likely to contribute significantly to lower 
than expected breakdown strength measured for the 14.53% 
polyester nanocomposite. 
     Other possible reasons for decreased breakdown strength in 
addition to nanoparticle aggregation include losses due to 
leakage current that result in local damage or heating, 
increasing the odds of an electron cascade taking place at 
lower electrical field strengths.  Varlow and Li noted a certain  

 
Fig. 1. TEM images of nanofiller modified thermoplastics.  A and B show 
LLDPE (2.39%), C and D show Nylon-6 (2.84%), E and F show Nylon-6 

(2.96%), G and H show Polyester (12.87%), and I and J show  
Polyester (14.53%). 
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weight percent loading at which the dielectric character would 
be substantially determined by the bulk qualities of the filler 
material [1].  At high filler percents, the electric field density 
in the low dielectric constant polymers may be increased as 
well, since the field would preferentially locate in the lower 
permittivity polymer. 
     Using the Student’s t-test (α=0.05), all film samples were 
found to have statistically significant increases in dielectric 
strength after filler addition with the exception of the 
LDPE/EVA films.   
     Long term tests again showed improvement with filler 
addition, with one exception.  The nylon-6 (2.96%) sample 
showed a drastic drop in lifetime.  This sample was prepared 
as an extremely thin film, which likely biased these results 
beyond easy interpretation for corona endurance.  The 
methodology used for the other         samples calls for an 
applied voltage which is almost at the short-term breakdown 
strength of this film (~2 kV).   
     LDPE with 2.39% loading showed nearly a fivefold 
increase in median time to breakdown, nylon-6 with 2.84% 
loading showed an eightfold increase, and both polyester 
(12.87% and 14.53%) samples showed more than a twofold 
increase with respect to the neat polymers.  
 

IV. SUMMARY AND CONCLUSIONS 

Thermoplastic samples with nano-additives showed 
statistically improved dielectric breakdown strength when 
compared to neat samples, but the contributions to these gains 
were varied as a function of percent nanoclay added.  This 
implies a complex set of both manufacturing and experimental 
variables.  A similar gain in corona endurance was noted in 
most samples which were modified with nanoclay.  
Exceptions in both cases can be attributed to micron-scale 
morphological defects cause by over loading of nanoparticles 
or processing defects.   

The decrease in breakdown strength of nanocomposite at 
high filler concentration may suggest an upper limit to 
electrical augmentation.  Varlow and Li [1] noted in their 
study on a PZT (Lead Zirconate Titanate) polyester composite 
films that filler contents <15 wt% would have electrical 
properties most like that of the polymer, but high 
concentrations of filler could lead to high losses and low 
dielectric strength.  A second concern that the high-k filler will 
displace electrical field density into the low-k polymer could 
mean that samples with high filler concentrations are 
effectively equivalent to thinner samples.   

Low standard deviation in most fast-rate tests could hint at 
means of controlling the dielectric breakdown strength of 
these and other polymers.  While the increases found in this 
study were often nonlinear especially at higher concentrations, 
studies which probe more deeply into the gains achieved with 
varying filler levels in individual films could search for 
optimal levels of clay nanofiller specific to each material.  In 
further research, care must be taken to manufacture materials 
with minimized variance, so that experimental variables can 
be more clearly elucidated. 
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